谢丹:矿机的数学博弈论 如何实现帕累托最优(烧脑深度)

  • Post author:
  • Post category:未分类

加密货币的挖矿是一个新兴的行业,其产业链短、技术立足的特点使得矿机定价是一个很奇妙的博弈:定价高了,矿机商卖不出去;定价低了,矿场赚了大部分钱。其实矿场中矿机本身的运营,也是需要数学博弈论在后面支撑的。

挖矿主要的数学模型关注的就是几个:币价、算力、算力功耗。在这里,我们举一个最简单的案例来说明:假设不考虑币价涨跌,某矿币每日产出是100万元,A目前全部挖矿算力为10T,每T功耗为5万元。假设A没有对手,那么A产出100万,电力成本50万,从而有50万的利润。

这时,出现了新的矿场B,其矿机的每T功耗为只有A的一半,也就是每T为2.5万元。B手上也有10T的算力。B加入后,对挖矿市场的分配就是一个巨大的变动。

现在全矿场共20T算力,每日产出还是100万。B属于后进来者,而且功耗领先。B 10T的每日产出为50万,而成本为25万,从而每日有25万的利润。但A就是只有50万产出了,而成本也为50万,从而利润为0。

当然,真实的情形下,A会降低自己的产能,那么降到多少呢?这个很容易计算,A假设算力为x ,全网算力就是10+X,所以A的收入是100*X/(10+x),其成本为 5X,所以利润为 100X/(10+X) – 5X。A的最优解,我们可以进行微积分求导,解的结果为

X=10*(√2 -1) = 4.1 T。当然更直接的办法是拉一个excel表。

风险提示

,请投资者提高风险防范意识。

发表评论